{itemname}
{itemname}
香港二樓書店 > 今日好書推介
成為賈伯斯:天才巨星的挫敗與孕成
定價217.00元
8
折優惠:
HK$173.6
●二樓推薦
●文學小說
●商業理財
●藝術設計
●人文史地
●社會科學
●自然科普
●心理勵志
●醫療保健
●飲 食
●生活風格
●旅 遊
●宗教命理
●親子教養
●少年讀物
●輕 小 說
●漫 畫
●語言學習
●考試用書
●電腦資訊
●專業書籍
實戰人工智慧之深度強化學習:使用PyTorch ╳Python
沒有庫存
訂購需時10-14天
9789865021900
小川雄太郎
許郁文
碁峰
2019年7月19日
167.00 元
HK$ 150.3
詳
細
資
料
ISBN:9789865021900
規格:平裝 / 256頁 / 17 x 23 x 1.28 cm / 普通級 / 單色印刷 / 初版
出版地:台灣
分
類
電腦資訊
>
概論/科技趨勢
>
人工智慧/機器學習
同
類
書
推
薦
理論到實作都一清二楚:機器學習原理深究
理論到實作都一清二楚:機器學習原理深究
Tensorflow接班王者:Google JAX深度學習又快又強大
凡人也能懂的白話人工智慧演算法
30分鐘就讀懂:機器學習從數學開始(第二版)
其
他
讀
者
也
買
電烤箱烹調術:不只烤、蒸、煮,發酵也OK!
精彩 Adobe Illustratror CC 製作向量視覺創意
設計達人自學必備Photoshop+Illustrator 視覺創意雙效工作術
跟Adobe徹底研究Photoshop CC
Python入門教室:8堂基礎課程+程式範例練習,一次學會Python的原理概念、基本語法、實作應用
Python基礎必修課(含MTA Python微軟國際認證模擬試題)
內
容
簡
介
以step by step的方式學習人工智慧的程式撰寫
最近,「人工智慧」、「深度學習」這類的關鍵字出現在的機會非常多,但能夠實際動手做的人卻非常少。本書以非研究者的一般讀者為主要族群,希望帶著各位讀者邊做邊了解強化學習與深度強化學習,也會盡量介紹與解說可實際操作的程式碼。只要您具備粗淺的程式設計經驗以及初階的線性代數知識,就能看懂本書的內容。
透過本書,您將可以:
.認識強化學習的概念與術語
.學到策略梯度法、Sarsa、Q學習演算法的撰寫方式
.了解Anaconda的設定方法
.利用PyTorch撰寫深度學習的程式碼,解決分類手寫數字影像的MNIST課題
.了解DQN演算法的撰寫方法
.利用深度學習演算法撰寫倒立單擺系統
.利用深度強化學習的A2C撰寫打磚塊遊戲
.利用AWS的GPU建置深度學習環境的方法
?
目
錄
第1章 強化學習的概要
1.1 機械學習的分類(監督式學習、非監督式學習、強化學習)
1.2 強化學習、深度強化學習的歷史
1.3 深度強化學習的應用實例
第2章 以強化學習建置迷宮課題
2.1 Try Jupter的使用方法
2.2 建置迷宮與智能體
2.3 建置策略迭代法
2.4 整理價值迭代法的專業術語
2.5 建置Sarsa
2.6 建置Q學習
第3章 利用倒立單擺課題學習強化學習
3.1 於本地端電腦建置強化學習執行環境的方法
3.2 解說倒立單擺課題「CartPole」
3.3 說明多變數、連續值狀態的表格表示法
3.4 撰寫Q學習
第4章 利用PyTorch建置深度學習
4.1 神經網路與深度學習的歷史
4.2 解說深度學習的計算方式
4.3 利用PyTorch撰寫分類手寫數字影像的MNIST課題
第5章 建置深度強化學習DQN
5.1 深度強化學習DQN(Deep Q-Network)的解說
5.2 建置DQN的四項重點
5.3 建置DQN(上篇)
5.4 建置DQN(下篇)
第6章 建置深度強化學習的進階版
6.1 深度強化學習的演算法地圖
6.2 建置DDQN(Double-DQN)
6.3 建置Dueling Network
6.4 建置Prioritized Experience Replay
6.5 建置A2C
第7章 於AWS的GPU環境建置打磚塊遊戲
7.1 解說打磚塊遊戲「Breakout」
7.2 於AWS建置使用GPU的深度學習的執行環境
7.3 學習Breakout之際的四項重要事項
7.4 A2C的建置(上篇)
7.5 A2C的建置(下篇)
序
序
近年來,聽到強化學習、深度強化學習這些關鍵字的機會真的非常多,但「實際建置強化學習」的人卻非常少。現在已是第三波AI的時代,市面上也有許多關於「深度學習」的書籍,但是將焦點放在強化學習或深度學習的書籍,內容往往偏向研究人員的學術研究。學術性的解說重視理論,也會仔細地說明公式與證明過程,但可供實際操作的程式碼卻不多,所以讓非研究者的讀者覺得難以一窺強化學習、深度強化學習的殿堂。
本書以非研究者的一般讀者為主要族群,希望帶著各位讀者邊做邊了解強化學習與深度強化學習,也會盡量介紹與解說可實際操作的程式碼。本書的程式碼皆可下載,希望大家能夠跟著本書的程式碼實作學習。
強化學習與深度強化學習主要有兩大用途,一者是建立機器人的控制規則,一者是建立如圍棋、將棋這類對戰遊戲的戰略。本書介紹的是控制規則的建置,而非圍棋這類對戰遊戲的戰略,不過對於想要建置對戰遊戲戰略的讀者而言,本書的內容雖然基本,卻也能幫上不少忙。
讀者需具備的背景知識
本書的讀者應該都對強化學習、深度強化學習有興趣,卻不知道細節與建置的方法。要讀懂本書的內容需要具備下列三項知識:
.能看懂if、for陳述句
.能自訂方法(函數)
.了解向量與矩陣的乘法
換言之,只要具備粗淺的程式設計經驗以及初階的線性代數知識,就能讀懂本書的內容。本書使用的程式語言為Python。雖然本書的內容連Python初學者都能看得懂,但有時礙於版面,無法一一說明瑣碎的Python基礎知識,建議Python初學者可另行參考網路資訊或Python入門書。
書
評
其 他 著 作