序言
本書具備許多獨有的特色,其內容都源自於三位作者實際的數學史教學經驗。
本書的內容著重於單元的選擇,而不在題材的包山包海。儘管讀者在此書中,可能找不到其他參考書籍會出現的某些特定資訊,然而,我們所介紹的各個主題都有足夠的深度,使得學生們可以在一個真實的歷史情境中,實際地從事數學知識活動。他可以像古埃及人一樣地作長除法,像巴比倫人一樣解二次方程,以及如同歐幾里得時代的學生一樣,研究幾何學。參與古代數學家經歷過的數學活動與問題,並面對他們所遭遇的相同困難,最終獲得問題的答案,便是欣賞早期學者之聰慧與創意的最佳途徑。我們(三位作者)也發現,學生們享受著這種深入學習數學史的方式,並且能藉由分析古代的且另類的數學方法,增益他們對現代數學的理解。
本書涵蓋了初等數學的歷史根源:算術、代數、幾何及數論。它省略了許多晚近發展的數學單元。近代所發展的諸多數學主題,都超乎大學數學系的專業範疇,同時,若僅僅在一個膚淺的層次上討論這些概念,並沒什麼太大的意義。具備足夠高中數學知識背景的學生,一定可以藉由研讀本書而獲益;同時,本書大部分的內容(例如:巴比倫、埃及、希臘,以及其他記數系統和計算用的算則),都屬於一般國中生可理解的程度。
由於本書討論了一般中小學數學課程所包含的多數主題的起源,所以特別適合未來的數學教師閱讀。我們過去的經驗也顯示:這些材料的份量,足以提供開設一學期三學分的數學史課程,而這門課是以數學主修的學生或未來的中學數學教師為對象。本書的內容(特別是第1、2、3、6和8章)也適合當作培育未來小學教師的課程,並作為中學生的補充教材,以及一般讀者怡情養性之用。我們誠摯地期許,相較於過去的讀物,本書能將數學史惠及更廣大的閱聽大眾。
本書中的許多材料來自一部荷蘭文本,Van Ahemes tot Euclides (Wolters, Groningen),由當時任教於烏崔特大學的奔特(Lucas N. H. Bunt)博士,以及他的合作者 Catharina Faber-Gouwentak博士、E. A. de Jong修女、D. Leujes、H. Mooij博士以及P. G. Vredenduin博士所共同撰寫。書中包括了許多由瓊斯(Phillip S. Jones)所貢獻的修飾與延拓,其中包括有第6章的後半部、第7章的前半部,以及第8章的大部分。他的小冊子《理解數目:它們的歷史與用途》(Understanding Numbers: Their History and Use)的大部分內容已經併入本書。至於貝迪因特(Jack D. Bedient)則加入了本書草稿的最後組織工作。
作者群由衷地感謝Bruce E. Meserve教授,他的許多建議對於本書初稿的改善貢獻良多。同時,他的協助與鼓勵也支撐著此一計畫直到完工。作者群也想對Prentice-Hall出版社的工作同仁之襄助表示謝忱。而Anna Church和Emily Fletcher負責打字工作,也是我們深懷感激的。
?
奔特(Lucas N. H. Bunt)
瓊斯(Phillip S. Jones)
貝迪恩特(Jack D. Bedient)