導讀
數學式邏輯思考的意義
在日本的數學普及書寫中,永野裕之的著作風格一直都相當獨特。比方說吧,他的《天哪!數學原來可以這樣學》及《喚醒你與生俱來的數學力》,就結合了學校數學的解題技能與數學普及的博雅素養,大大地豐富了我們對數學普及敘事進路的另類想像。
在本書中,作者除了延續前兩書的風格之外,還特別強調「數學式邏輯思考」對於網路時代的重要性。這種思考在溝通、解題以及充當概念工具等三個面向上,都不可或缺。儘管作者注意到這些問題時,主要是由於他身處日本這個特別的文化環境所激發,然而,邏輯思考卻已成為全球性浪潮席捲下,人際溝通的必要條件。這是普世的認知,絕對不只是日本社會的特定需求。
至於「邏輯思考」所以加上「數學式」這個形容詞,是因為作者認為「要培養邏輯思考所代表的兩種能力,亦即『(1)溝通能力』和『(2)問題解決能力』時,最合適的工具就是數學。」這也難怪,作者就讀中學後期時,曾經非常狂熱地投入數學學習,他深知數學知識活動的實作,是嚴格邏輯思考訓練的不二法門。這尤其在他創辦(個別指導補習班)「永野數學塾」之後,體驗更加深刻。事實上,早在《喚醒你與生俱來的數學力》中,他就曾向那些逃避數學的(高中)文組學生喊話,指出邏輯思考能力是不分文組或理組,所有人都應該具備的一種能力。這是因為誠如上一段指出,這是一個早已邁向國際資訊化社會的時代,「當一群成長環境不同、想法不同的人聚在一起,試圖解決各種以往未曾碰過的問題時,自然而然必須具備理解他人想法、用自己的想法說服別人的表達能力,以及任何情況下都能將問題抽絲剝繭、解疑釋結的能力。」因此,為了鍛鍊邏輯力,他大聲疾呼:所有人都必須學習數學。
這些也足以解釋作者在本書中,為何會以數學為例,來說明邏輯思考如何有助於溝通、如何有助於解題,乃至於如何運用數學這個十分有力的工具。顯然由於這些相關數學內容與方法的解說,讓本書除了可以定位為一般人的知識普及讀物之外,也適合作為高中數學特色課程或是大學數學通識的絕佳參考書籍。以下,我將大略介紹本書內容,並藉以推薦本書給愛好數學普及的讀者。
對於一般讀者來說,本書第一章內容最具有邏輯思考的一般性參考價值。譬如說吧,本章的主題如整理與分類、圖表的恰當使用、PM矩陣、Will-Skill矩陣與SWOT矩陣如何解讀,以及簡報力之提升要件等等,對於企業公司主管或一般上班族,都是不可或缺的邏輯思考素養。當然,如何深刻感受冰冷數字的「意在言外」,更是不容忽視的數學素養,而這若能從數學課堂就開始培養,當然是更理想的學習策略。
在本書第二章中,與一般讀者非常相關的主題,就是第三節的「必要條件與充分條件」(necessary and sufficient condition)。一般的數學命題主要依賴這兩個條件來建立,只是目前「邏輯」單元已經從高中數學課程刪除,因此,在課堂上或許分配不到應有的教學時間 – 這是升學評量使然,不能責怪老師。然而,針對邏輯思考能力之提升,在口語或書寫中,學會正確的表達或釐清至為重要。誠如作者所指出,如果無法正確掌握這種邏輯思考,那麼,給定「若A則B。所以為了B,你必須做到A。」與「若A則B。所以為了B,你只能選擇A。」如何判斷這兩者等價但卻都是無效的推論,恐怕就「理未易明」了。
在本書第二章第三節中,作者還針對命題(proposition),介紹如何活用必要條件與充分條件,來準確判斷其真偽的方法。為了進一步說明這些方法,作者在本章第五節引進「否(定)命題」與「對偶命題」的概念,利用邏輯推論的等價性(equivalence),提醒我們「碰到難辨真偽的命題,試著用對偶去思考。」不過,他也非常明白地指出:在日常語言中,「即使『若P則Q』為真,P與Q之間也不見得存在因果關係。」因此,對偶命題的邏輯思考,還是要明辨,小心使用才好。
本書所有這些有關邏輯推論的說明,對於我們精確運用語言或文字助益甚大,只是當我們以數學為演示例(demonstration)時,要是缺乏(與一般文字論述)連結之提醒,大概就難以想像數學訓練可以提升或強化邏輯思考能力吧。因此,在本書第三章中,作者引進了許多相關的數學問題,一點也不令人感到意外。
第三章的數學問題之相關主題依序是概算(費米推論法)、賽局理論(game theory)、圖論(graph theory),以及統計學(標準差、(統計)相關及迴歸分析)。顯然,作者是運用這些問題的求解過程,來說明數學如何被充當成一種邏輯思考工具來使用。譬如說吧,在概算主題(第三章第一節)上,作者所討論的問題就有:
?地球以外有多少外星文明?
?東京有多少人孔蓋?
?芝加哥有多少位鋼琴調音師?
?日本人1年有多少葡萄酒消費量?
至於如何概算這些問題?作者則是採用所謂的「費米推論法」,其中數學當然是主要的工具。此外,相親派對問題就是基於圖論來建立模式(pattern),而得以輕易解決。至於葡萄酒價格的預測問題,則是經濟學家亞森費特(Orley Ashenfelter)基於統計學所建立的多元迴歸式,這種「透過資料的解析推導出有益的(或出乎意料的)事實就叫做資料探勘(data mining),而亞森費特的葡萄酒方程式可以說是相當好的實例。」所有這些問題的解決,除了教育成規所重視的數學能力之外,還需要一種「綜合性的數學力」,那是東京大學錄取新生的重要指標。
因此,本書的書寫動機之一,應該也是作者試圖呼應東京大學的新生篩選條件,那就是,高中生藉由學習數學必須培養的三種能力:
?數學式的思考能力
?數學式的表現能力
?綜合性的數學力
如果學校數學課程難以或無法滿足這個需求,那麼,研讀本書絕對是值得認真考慮的選項之一。另一方面,針對一般讀者,如果打算在職場提升表達能力,那麼,本書的例題及其求解說明,也相當具有啟發性,值得參考借鏡。
?
洪萬生 台灣師範大學數學系退休教授