庫存狀況
「香港二樓書店」讓您 愛上二樓●愛上書
我的購物車 加入會員 會員中心 常見問題 首頁
「香港二樓書店」邁向第一華人書店
登入 客戶評價 whatsapp 常見問題 加入會員 會員專區 現貨書籍 現貨書籍 購物流程 運費計算 我的購物車 聯絡我們 返回首頁
香港二樓書店 > 今日好書推介
   
格雷的五十道陰影I:調教(電影封面版)
  • 定價127.00元
  • 8 折優惠:HK$101.6
  • 放入購物車
二樓書籍分類
 
ARTIFICIAL INTELLIGENCE: A GUIDE TO INTELLIGENT SYSTEMS 4/E

ARTIFICIAL

沒有庫存
訂購需時10-14天
9781292730851
NEGNEVITSKY?
全華圖書
2025年1月20日
560.00  元
HK$ 532  






ISBN:9781292730851
  • 叢書系列:大學資訊
  • 規格:平裝 / 600頁 / 16.8 x 22.8 cm / 普通級 / 單色印刷 / 四版
  • 出版地:台灣
    大學資訊


  • [ 尚未分類 ]











      What are the principles behind intelligent systems? How are they built? What are intelligent systems useful for? How do we choose the right tool for the job? These questions are answered by Michael Negnevitsky’s Artificial Intelligence: A Guide to Intelligent Systems.



      Unlike many books on computer intelligence, which use complex computer science terminology and are crowded with complex matrix algebra and differential equations, this text demonstrates that the ideas behind intelligent systems are simple and straightforward. This text assumes little or no programming experience as it tackles topics like expert systems, fuzzy systems, artificial neural networks, evolutionary computation, knowledge engineering, and data mining.



    本書特色



      1. 淺顯易懂:本書刻意避開艱深的電腦科學專業術語,不會充斥複雜的矩陣代數和微分方程。作者強調書中的概念其實相當簡單直觀,適合一般讀者閱讀。



      2. 無程式門檻:讀者不需要具備程式設計能力或深厚的微積分基礎就能理解內容。這本書是根據作者30年來授課經驗,針對非資訊背景的學生編寫而成。



      3. 實用導向:書中涵蓋專家系統、模糊系統、類神經網路、深度學習等主題,並說明如何選擇合適的工具來解決實際問題。特別適合想要運用AI解決實務問題的讀者。



      4. 跨領域應用:本書的目標讀者包含工程師、科學家、企業經理人、醫生、律師等各行各業的專業人士,特別適合那些想用非傳統方法解決問題的人。



      5. 與時俱進:書中介紹最新的AI工具和技術,包括MATLAB工具箱(模糊邏輯、類神經網路、全域最佳化、深度學習)以及ChatGPT等。雖然書中會展示這些工具的使用,但內容並不綁定於特定工具,讀者可以靈活運用不同的工具來實作。?


     





    1. Introduction to Intelligent Systems

    ?1.1 Intelligent Machines, or What Machines Can Do

    ?1.2 The History of Artificial Intelligence, or From the ‘Dark Ages’ to Knowledge-based Systems

    ?1.3 Generative AI

    ?1.4 Summary

    ?Questions for Review

    ?References



    2. Expert Systems

    ?2.1 Introduction, or Knowledge Representation Using Rules

    ?2.2 The Main Players in the Expert System Development Team

    ?2.3 Structure of a Rule-based Expert System

    ?2.4 Fundamental characteristics of an expert system

    ?2.5 Forward Chaining and Backward Chaining Inference Techniques

    ?2.6 MEDIA ADVISOR: A Demonstration Rule-based Expert System

    ?2.7 Conflict Resolution

    ?2.8 Uncertainty Management in Rule-based Expert Systems

    ?2.9 Advantages and Disadvantages of Rule-based Expert systems

    ?2.10 Summary

    ?Questions for Review

    ?References



    3. Fuzzy Systems

    ?3.1 Introduction, or What Is Fuzzy Thinking?

    ?3.2 Fuzzy Sets

    ?3.3 Linguistic Variables and Hedges

    ?3.4 Operations of Fuzzy Sets

    ?3.6 Fuzzy Inference

    ?3.7 Building a Fuzzy Expert System

    ?3.8 Summary

    ?Questions for Review

    ?References



    4. Frame-based Systems and Semantic Networks

    ?4.1 Introduction, or What Is a Frame?

    ?4.2 Frames as a Knowledge Representation Technique

    ?4.3 Inheritance in Frame-based Systems

    ?4.4 Methods and Demons

    ?4.5 Interaction of Frames and Rules

    ?4.6 Buy Smart: A Frame-based Expert System

    ?4.7 The Web of Data

    ?4.8 RDF – Resource Description Framework and RDF Triples

    ?4.9 Turtle, RDF Schema and OWL

    ?4.10 Querying the Semantic Web with SPARQL

    ?4.11 Summary

    ?Questions for Review

    ?References



    5. Artificial Neural Networks

    ?5.1 Introduction, or How the Brain Works

    ?5.2 The Neuron as a Simple Computing Element

    ?5.3 The Perceptron

    ?5.4 Multilayer Neural Networks

    ?5.5 Accelerated Learning in Multilayer Neural Networks

    ?5.6 The Hopfield Network

    ?5.7 Bidirectional Associative Memory

    ?5.8 Self-organising Neural Networks

    ?5.9 Reinforcement Learning

    ?5.10 Summary

    ?Questions for Review

    ?References



    6. Deep Learning and Convolutional Neural Networks

    ?6.1 Introduction, or How “Deep” Is a Deep Neural Network?

    ?6.2 Image Recognition or How Machines See the World

    ?6.3 Convolution in Machine Learning

    ?6.4 Activation Functions in Deep Neural Networks

    ?6.5 Convolutional Neural Networks

    ?6.6 Back-propagation Learning in Convolutional Networks

    ?6.7 Batch Normalisation

    ?6.8 Summary

    ?Questions for Review

    ?References



    7. Evolutionary Computation

    ?7.1 Introduction, or Can Evolution Be Intelligent?

    ?7.2 Simulation of Natural Evolution

    ?7.3 Genetic Algorithms

    ?7.4 Why Genetic Algorithms Work

    ?7.5 Maintenance Scheduling with Genetic Algorithms

    ?7.6 Genetic Programming

    ?7.7 Evolution Strategies

    ?7.8 Ant Colony Optimisation

    ?7.9 Particle Swarm Optimisation

    ?7.10 Summary

    ?Questions for Review

    ?References



    8. Hybrid Intelligent Systems

    ?8.1 Introduction, or How to Combine German Mechanics with Italian Love

    ?8.2 Neural Expert Systems

    ?8.3 Neuro-Fuzzy Systems

    ?8.4 ANFIS: Adaptive Neuro-Fuzzy Inference System

    ?8.5 Evolutionary Neural Networks

    ?8.6 Fuzzy Evolutionary Systems

    ?8.7 Summary

    ?Questions for Review

    ?References



    9. Knowledge Engineering

    ?9.1 Introduction, or What Is Knowledge Engineering?

    ?9.2 Will an Expert System Work for My Problem?

    ?9.3 Will a Fuzzy Expert System Work for My Problem?

    ?9.4 Will a Neural Network Work for My Problem?

    ?9.5 Will a Deep Neural Network Work for My Problem?

    ?9.6 Will Genetic Algorithms Work for My Problem?

    ?9.7 Will Particle Swarm Optimisation Work for My Problem?

    ?9.8 Will a Hybrid Intelligent System Work for My Problem?

    ?9.9 Summary

    ?Questions for Review

    ?References



    10. Data Mining and Knowledge Discovery

    ?10.1 Introduction, or What Is Data Mining?

    ?10.2 Statistical Methods and Data Visualisation

    ?10.3 Principal Components Analysis

    ?10.4 Relational Databases and Database Queries

    ?10.5 The Data Warehouse and Multidimensional Data Analysis

    ?10.6 Decision Trees

    ?10.7 Association Rules and Market Basket Analysis

    ?10.8 Summary

    ?Questions for Review

    ?References



    Glossary



    Index




    其 他 著 作