{itemname}
{itemname}
香港二樓書店 > 今日好書推介
愛的69種玩法(I、II雙重魅惑夾鏈袋限量版)
定價227.00元
8
折優惠:
HK$181.6
●二樓推薦
●文學小說
●商業理財
●藝術設計
●人文史地
●社會科學
●自然科普
●心理勵志
●醫療保健
●飲 食
●生活風格
●旅 遊
●宗教命理
●親子教養
●少年讀物
●輕 小 說
●漫 畫
●語言學習
●考試用書
●電腦資訊
●專業書籍
數學教你不犯錯(上下冊套書)
沒有庫存
訂購需時10-14天
9789863209096
艾倫伯格
李國偉
天下文化
2024年1月12日
283.00 元
HK$ 240.55
詳
細
資
料
ISBN:9789863209096
叢書系列:
科學自然
規格:平裝 / 560頁 / 14.8 x 21 x 3.55 cm / 普通級 / 單色印刷 / 初版
出版地:台灣
科學自然
分
類
[ 尚未分類 ]
同
類
書
推
薦
內
容
簡
介
數學界的《蘋果橘子經濟學》,顛覆數學太過抽象、與生活無關的刻板印象!
?
會數學就像戴上X光的眼鏡,能從混亂無序的世界表像裡,看透其後隱藏的結構。數學是一門不會把事情搞錯的學問,它的技術與習慣經歷過多少世紀的辛勤努力與論辯。手中有了數學當工具,你可以更深刻、更穩健、更有意義的瞭解這個世界。你需要的只是一位教練,或甚至是一本書,來教導你相關規則及基本戰術。而這本《數學教你不犯錯》就是你最好的教練,它能教你如何達成目標。
?
在《數學教你不犯錯,上》,你能學會如何不落入線性思考:你會明白做決策得先明白自己的立足點、你將學會用數學來撥正錯誤的直覺、看清真正的趨勢。你也能學會不做錯誤推論:從此看清楚投顧老師的詐術,知道巧合比你想象的還常發生,看清不太可能跟不可能的差別,而且從此不受統計數字的愚弄!
目
錄
《數學教你不犯錯(上)》
前言??? 我什麼時候才會用到數學?
?
PART I? 線性思考錯了嗎?
第1章:更不像瑞典
第2章:局部平直,大域彎曲
第3章:每個人都肥胖
第4章:相當於死了多少美國人?
第5章:派餅比盤子還大
?
PART II? 這樣推論可以嗎?
第6章:破解聖經密碼
第7章:死魚不會讀心
第8章:歸渺法
第9章:內臟占卜學
第10章:上帝,?在嗎?是我,貝氏推論
?
《數學教你不犯錯(下)》
PART III? 期望值是什麼?
第11章:你期望贏得樂透時,是在期望什麼
第12章:錯過更多班機
第13章:火車鐵軌相交之處
?
PART IV? 認清迴歸,不錯估趨勢
第14章:平庸會出頭
第15章:高爾頓的橢圓
第16章:肺癌令你抽菸嗎?
?
PART V? 存在性的真實意義
第17章:沒有民意這種東西
第18章:「我從虛空中創造出一個新奇宇宙」
?
結語? 如何做才能正確
?
序
序
什麼時候用得到數學?
?
此刻,在世界上某間教室裡,有一位學生正向老師抱怨,為什麼課後要計算30條定積分?那會耗費掉他大半個週末。
這位學生寧可做些別的事,事實上他最不想做的就是積分。上個週末他就曾經花了很多時間算另外30條定積分,看起來與這次的定積分好像差別不大。他看不出做這件事的重點,他告訴老師自己的想法。在師生的這場對話中,學生一定會問到一個老師最怕聽到的問題:
「我什麼時候用得到它?」
老師很可能這麼回答:
「我知道計算積分很乏味,但是你要記住,將來你不知道會選擇什麼樣的工作,你現在可能覺得定積分沒用,但也許有一天你幹的那一行,會需要又快又準的算出定積分。」
?
這種答覆很難讓學生滿意,因為它是假話。老師與學生都知道這不是真話。有多少成人需要用到(1-3x+4x2)-2dx的定積分?或是3q 的餘弦?或多項式綜合除法?了不起幾萬人而已。
老師對這種假話也很不滿意,這我很清楚,因為我當了多年的數學教授,曾經要求成百上千的學生計算定積分。
幸運的是,還有一個比較好的答案,大致如下:
「數學並不只是靠背誦公式來做系列運算,一直算得你耐心與精力全失為止。雖然在你上過的某些數學課裡,數學好像就是那麼回事。學數學要計算定積分,猶如足球員要做體能訓練與柔軟操一樣。假如你想踢足球,我是說能真正的踢足球,到達能上場比賽的程度,你就必須做一大堆無聊、反覆、表面上看來毫無意義的操練。職業球員會有用到那些動作的機會嗎?你不會看到球場上有人丟擲重物或繞著交通角錐轉來轉去,但是球員會用到從日復一日乏味的操練中練出的強度、速度、直覺與彈性。學習這些操練就是在學習踢足球。
「假如你想當職業足球員,或甚至只是想進入校隊,都必須花很多乏味的週末在球場上進行操練,除此之外別無他法。現在給你一點好消息,假如你實在受不了苦練,你還是可以跟朋友一起玩球取樂。你在對方防守的間隙中傳出一球,或踢進一記遠球,獲得的樂趣跟職業球員一樣多。這會比坐在家裡看電視轉播的職業賽更健康、更快樂。
「數學也差不多這樣。你也許不必以需要大量數學的職業為目標,大多數人都如此,你不必覺得不好意思。但你還是可以做數學,其實你也許已經在做數學,只是你不叫它數學。我們在推理的過程中早已融入數學,而且數學會讓你的推理能力增強。會數學就像戴上了X光眼鏡,能從混亂無序的世界表像裡,看透其後隱藏的結構。數學是一門不會把事情搞錯的學問,它的技術與習慣經歷過許多世紀的辛勤努力與論辯。一旦手中有數學當工具,你可以更深刻、更穩健、更有意義的瞭解世界。你需要的只是一位教練,或甚至是一本書,教導你相關規則及基本戰術。讓我來當你的教練,讓我教你如何達成目標。」
因為時間的關係,我很少會在課堂裡說這些話。但是現在寫在書裡,就可以再加以引伸一些。我希望對我在前面提到的那些宏大的斷言,能拿出一些證據,我想告訴你,我們每天生活中碰到的問題,不論是政治、醫藥、商務、甚至神學,都摻雜著數學問題。光認識到這一點,你就會得到一些無法從其他手段獲得的真知灼見。
其實即使我有時間向學生講完激勵人心的演講,但如果這學生夠聰明,應該還是不會被說服。
他會說:「教授,雖然聽起來很有道理,但是太抽象了。你說會運用數學,就能把原來可能會犯錯的事搞對。那到底是些什麼事呢?給我一個具體的例子。」
這個時候我正好可以告訴他,沃德(Abraham Wald)與失蹤的彈孔的故事。
數學家運籌帷幄
就像第二次世界大戰很多的故事一樣,開頭是一位猶太人遭納粹追捕而逃離歐洲,結尾是讓納粹得不償失吃足苦頭。沃德於1902年出生在前奧匈帝國的克勞森堡(Klausenburg)。他進入少年期的時候,已有一場世界大戰寫入了書本,他的家鄉也變成了羅馬尼亞的克盧日(Cluj)。沃德的祖父是猶太人的拉比,父親是猶太潔食烘焙師,但是小沃德幾乎自始就是數學家。他在數學上的天賦很早就受賞識,因此維也納大學錄取他去攻讀數學。他喜愛集合論與度量空間,這是即使以純數學的標準來看,都相當抽象又深奧的課題。
但是沃德完成學業時,已經到了1930年代中期,當時奧地利的經濟十分蕭條,外國人幾乎不可能在維也納找到教職。最終解救沃德的是摩根史坦(Oskar Morgenstern),摩根史坦後來移民美國,並協助發明了賽局理論,但在1933年他是奧地利經濟研究所的所長。雖然摩根史坦只給沃德一個低薪的職位,處理一些零星的數學工作,卻是促成了有利於沃德的機會:因為沃德在經濟學上的經驗,當時在美國科羅拉多泉的經濟學機構考爾斯(Cowles)委員會,提供給他獎學金。雖然政治局面日益惡化,沃德仍不情願跨出會使他永遠離開純粹數學的一步。但是納粹征服了奧地利,終於幫沃德下定出走的決心。不過沃德在科羅拉多泉待沒幾個月,哥倫比亞大學就請他去擔任統計學教授,他再度整裝,踏上前往紐約的征途。
他就是從那裡開始參戰的。
第二次世界大戰期間,沃德主要在統計研究組(SRG)工作,SRG集合了美國統計學界的力量,是如同曼哈頓計畫的機密單位,只不過不是在發展原子彈,而是發展方程式。SRG的所在地也的確座落在曼哈頓,就在距離哥倫比亞大學一個街口的晨邊高地西118街401號。現在那座大樓是哥倫比亞大學的教師公寓,也有一些診所進駐。但是在1943年,那裡是戰時忙進忙出的數學中心。在哥倫比亞的應用數學組裡,數十位年輕女性俯首於桌上型計算機,忙著計算戰鬥機在空中的最佳飛行路線,以便把敵機鎖定在機關砲的射擊範圍裡。從普林斯頓來的研究人員,在另一個房間發展戰略轟炸的規程,而哥倫比亞的原子彈小組就它的在隔壁。
最終在這些小組裡,就屬SRG最具能量,也最有影響力。這個單位結合了類似學系的開放學術氛圍,以及敵愾同仇的目標。SRG的組長華里斯(W. Allen Wallis)說:「只要我們做出建議,經常事情就有所改變。根據沃弗維茲(Jack Wolfowitz)的建議,戰鬥機會搭配不同種類的彈藥,戰鬥機飛行員可能因此成功返回或不再回來。海軍飛機使用的飛彈,裝填的火藥通過格西克(Abe Girshick)設計的取樣方案檢查。飛彈有可能會爆炸而毀掉我方飛機與飛行員,或一舉消滅目標。」
這項任務如此重大,因此必須集結一等一的數學頭腦來進行。按照華里斯的說法,「無論以量或以質而言,SRG都擁有最突出的一群統計學家。」戰後創辦哈佛大學統計系的莫斯提勒(F. Mosteller)在那兒,決策論先驅以及貝氏統計學的推動者莎維奇(J. Savage)也在那兒,麻省理工學院的數學家暨模控學發明者韋納(N. Wiener)會不時來訪。日後獲得諾貝爾經濟學獎的傅利曼(M. Friedman),在那個小組裡經常只算是第四聰明的人。
小組裡最聰明的人通常是沃德。沃德曾經是華里斯在哥倫比亞大學的老師,對小組而言是顯赫的人物。因為他算是來自敵國的外國人,從技術上來說,他並未獲准閱讀他自己寫的祕密報告。在SRG盛傳的一則笑話說,沃德一寫完一頁筆記,祕書就要立刻從他手裡奪過來。從某方面看來,沃德最不該屬於這個小組,因為他天性傾向於抽象化,會迴避直接的應用。但是他想用自己的才能對抗軸心國的動機很明顯。而且每當你想把籠統的觀念轉化為堅實的數學時,沃德正是你最想要的人物。
?
機身上消失的彈孔
現在問題來了。因為你不希望飛機遭敵方的戰鬥機打下來,所以想要加強飛機的裝甲。但是增加裝甲會讓飛機變重,比較重的飛機既難操控又耗油。飛機的裝甲太厚會成問題,太薄也會成問題,厚薄之間應該有一個最佳解。而之所以把一批數學家塞進紐約的公寓,就是想算出最佳解。
軍方把認為有用的數據交給SRG。美國的飛機從歐洲出任務回來後,全機會布滿彈孔,但分布卻不很均勻,機身上的彈孔較多,引擎部分的彈孔卻很少。
?
飛機的區段 ?? ?每平方英尺的彈孔數
引擎 ?? ?1.11
機身 ?? ?1.73
燃料系統 ?? ?1.55
飛機其他部分 ?? ?1.8
?
軍方看出了提高飛機效能的機會,可以使用較少的裝甲達成同等的保護作用,也就是把裝甲集中在飛機最需要的部分──中彈最多的區段。問題是該增加多少裝甲?又要在哪些區段加裝?軍方想請沃德幫算出答案,然而得到的結果卻大出他們預料。
沃德說,不該在彈孔多的地方加強裝甲,而是要加強在彈孔少的地方,也就是該在引擎的部分加強。
沃德的洞識在於先問一個簡單的問題:少掉的彈孔到哪裡去了?假如槍彈均勻打在整架飛機上,那麼引擎蓋上不也應該滿布彈孔嗎?沃德很確定自己知道少掉的彈孔到哪兒了,是在那些回不來的飛機上!能返航的飛機在引擎上的彈孔都很稀疏,是因為引擎遭受嚴重轟擊的飛機,根本飛不回來了。大多數安全返航的飛機,機身都像多孔瑞士乳酪,強烈顯示機身禁得起槍彈轟擊,因此不需特別加強裝甲。假如你去醫院的恢復室看看,你會發現腿上有槍傷的人,比胸部有槍傷的人更多,這並不是因為胸部不容易挨槍彈,而是胸部吃子彈的人難以存活。
數學家有套老把戲能使狀況明朗:把某些變數設定為零。在目前的例子裡,可以調整的是飛機引擎中彈後,繼續飛行的機率。把這個機率設定為零,意思是說引擎只要挨了一顆子彈,飛機就會墜落。現在數據會呈現什麼狀況?你會看到返航的飛機,彈孔分布在機翼、機身、機頭,但是就是沒有在引擎上。軍方的分析師有兩種方法解釋這種情形:德國的子彈哪裡都打就是不打引擎,或是引擎是最脆弱的地方。兩種方式都可以說明呈現的數據,不過後者有道理多了。所以彈孔稀疏的地方反而要加強裝甲。
軍方馬上把沃德的建議付諸實施,在韓戰與越戰中,海軍與空軍也持續遵守他的原則。我沒法精確告訴你,有多少美國飛機因此避免墜亡,今日美軍承繼SRG處理數據的部門,毫無疑問會很清楚真實狀況。美國國防當局從來都很瞭解,戰勝的一方並不是因為比對方更勇敢,或更自由,或更受上帝眷戀。戰勝的一方經常是少被擊落5%的飛機,或者少消耗5%的燃油,或能用95%的成本讓步兵多攝取5%的營養。這些都不是製作戰爭電影的素材,卻是打勝真正戰爭的要件。這裡面每一步都需要數學。(摘自本書前言)
?
書
評
其 他 著 作