庫存狀況
「香港二樓書店」讓您 愛上二樓●愛上書
我的購物車 加入會員 會員中心 常見問題 首頁
「香港二樓書店」邁向第一華人書店
登入 客戶評價 whatsapp 常見問題 加入會員 會員專區 現貨書籍 現貨書籍 購物流程 運費計算 我的購物車 聯絡我們 返回首頁
香港二樓書店 > 今日好書推介
   
格雷的五十道陰影I:調教(電影封面版)
  • 定價127.00元
  • 8 折優惠:HK$101.6
  • 放入購物車
二樓書籍分類
 
UNDERSTANDING ARTIFICIAL INTELLIGENCE: FUNDAMENTALS AND APPLICATIONS?

UNDERSTANDING

沒有庫存
訂購需時10-14天
9781119858331
ALBERT LIU(劉峻誠),OSCAR MING KIN (羅明健),IAIN
全華圖書
2022年12月01日
567.00  元
HK$ 538.65  






ISBN:9781119858331
  • 叢書系列:實用電子
  • 規格:精裝 / 224頁 / 15.9 x 17.8 x 3.14 cm / 普通級 / 單色印刷 / 初版
  • 出版地:台灣
    實用電子


  • 專業/教科書/政府出版品 > 電機資訊類 > 電子











      Understanding Artificial Intelligence

    ?

      Provides students across majors with a clear and accessible overview of new artificial intelligence technologies and applications

    ?

      Artificial intelligence (AI) is broadly defined as computers programmed to simulate the cognitive functions of the human mind. In combination with the Neural Network (NN), Big Data (BD), and the Internet of Things (IoT), artificial intelligence has transformed everyday life: self-driving cars, delivery drones, digital assistants, facial recognition devices, autonomous vacuum cleaners, and mobile navigation apps all rely on AI to perform tasks. With the rise of artificial intelligence, the job market of the near future will be radically different???many jobs will disappear, yet new jobs and opportunities will emerge.

    ?

      Understanding Artificial Intelligence: Fundamentals and Applications covers the fundamental concepts and key technologies of AI while exploring its impact on the future of work. Requiring no previous background in artificial intelligence, this easy-to-understand textbook addresses AI challenges in healthcare, finance, retail, manufacturing, agriculture, government, and smart city development. Each chapter includes simple computer laboratories to teach students how to develop artificial intelligence applications and integrate software and hardware for robotic development. In addition, this text:

    ?

      Understanding Artificial Intelligence: Fundamentals and Applications is an excellent textbook for undergraduates in business, humanities, the arts, science, healthcare, engineering, and many other disciplines. It is also an invaluable guide for working professionals wanting to learn about the ways AI is changing their particular field.

    ?

    本書特色

    ?

      - Focuses on artificial intelligence applications in different industries and sectors

    ?

      - Traces the history of neural networks and explains popular neural network architectures

     

      - Covers AI technologies, such as Machine Vision (MV), Natural Language Processing (NLP), and Unmanned Aerial Vehicles (UAV)

    ?

      - Describes various artificial intelligence computational platforms, including Google Tensor Processing Unit (TPU) and Kneron Neural Processing Unit (NPU)

    ?

      - Highlights the development of new artificial intelligence hardware and architectures



     





    Chapter 1 Introduction 1

    1.1 Overview 1

    1.2 Development History 3

    1.3 Neural Network Model 6

    1.4 Popular Neural Network 7

    1.4.1 Convolutional Neural Network 7

    1.4.2 Recurrent Neural Network 8

    1.4.3 Reinforcement Learning 9

    1.5 Neural Network Classification 9

    1.5.1 Supervised learning 10

    1.5.2 Semi-supervised learning 10

    1.5.3 Unsupervised learning 11

    1.6 Neural Network Operation 11

    1.6.1 Training 11

    1.6.2 Inference 12

    1.7 Application Development 12

    1.7.1 Business Planning 14

    1.7.2 Network Design 14

    1.7.3 Data Engineering 14

    1.7.4 System Integration 15

    Exercise 16



    Chapter 2 Neural Network 17

    2.1 Convolutional Layer 19

    2.2 Activation Layer 20

    2.3 Pooling Layer 21

    2.4 Batch Normalization 22

    2.5 Dropout Layer 22

    2.6 Fully Connected Layer 23

    Exercise 24



    Chapter 3 Machine Vision 25

    3.1 Object Recognition 25

    3.2 Feature Matching 27

    3.3 Facial Recognition 28

    3.4 Gesture Recognition 30

    3.5 Machine Vision Applications 31

    3.5.1 Medical Diagnosis 31

    3.5.2 Retail Applications 32

    3.5.3 Airport Security 33

    Exercise 34



    Chapter 4 Natural Language Processing 35

    4.1 Neural Network Model 36

    4.1.1 Convolutional Neural Network 36

    4.1.2 Recurrent Neural Network 37

    4.1.2.1 Long Short-Term Memory Network 38

    4.1.3 Recursive Neural Network 39

    4.1.4 Reinforcement Learning 40

    4.2 Natural Language Processing Applications 41

    4.2.1 Virtual Assistant 41

    4.2.2 Language Translation 42

    4.2.3 Machine Transcription 43

    Exercise 45



    Chapter 5 Autonomous Vehicle 46

    5.1 Levels of Driving Automation 46

    5.2 Autonomous Technology 48

    5.2.1 Computer Vision 48

    5.2.2 Sensor Fusion 49

    5.2.3 Localization 51

    5.2.4 Path Planning 52

    5.2.5 Drive Control 52

    5.3 Communication Strategies 53

    5.3.1 Vehicle-to-Vehicle Communication 54

    5.3.2 Vehicle-to-Infrastructure Communication 54

    5.3.3 Vehicle-to-Pedestrian Communication 55

    5.4 Law Legislation 56

    5.4.1 Human Behavior 57

    5.4.2 Lability 57

    5.4.3 Regulation 58

    5.5 Future Challenges 58

    5.5.1 Road Rules Variation 58

    5.5.2 Unified Communication Protocol 58

    5.5.3 Safety Standard and Guideline 59

    5.5.4 Weather/Disaster 59

    Exercise 60



    Chapter 6 Drone 61

    6.1 Drone Design 61

    6.2 Drone Structure 62

    6.2.1 Camera 63

    6.2.2 Gyro Stabilization 63

    6.2.3 Collision Avoidance 64

    6.2.4 Global Positioning System 64

    6.2.5 Sensors 64

    6.3 Drone Regulation 65

    6.3.1 Recreational Rules 65

    6.3.2 Commercial Rules 66

    6.4 Applications 66

    6.4.1 Infrastructure Inspection 66

    6.4.2 Civil Construction 67

    6.4.3 Agriculture 68

    6.4.4 Emergency Rescue 69

    Exercise 70



    Chapter 7 Healthcare 71

    7.1 Telemedicine 71

    7.2 Medical Diagnosis 72

    7.3 Medical Imaging 73

    7.4 Smart Medical Device 74

    7.5 Electronic Health Record 76

    7.6 Medical Billing 77

    7.7 Drug Development 78

    7.8 Clinical Trial 79

    7.9 Medical Robotics 80

    7.10 Elderly Care 81

    7.11 Future Challenges 82

    Exercise 84



    Chapter 8 Finance 85

    8.1 Fraud Prevention 85

    8.2 Financial Forecast 88

    8.3 Stock Trading 89

    8.4 Banking 91

    8.5 Accounting 94

    8.6 Insurance 95

    Exercise 96



    Chapter 9 Retail 97

    9.1 E-Commerce 98

    9.2 Virtual Shopping 100

    9.3 Product Promotion 102

    9.4 Store Management 103

    9.5 Warehouse Management 104

    9.6 Inventory Management 106

    9.7 Supply Chain 108

    Exercise 110



    Chapter 10 Manufacturing 111

    10.1 Defect Detection 112

    10.2 Quality Assurance 113

    10.3 Production Integration 114

    10.4 Generative Design 115

    10.5 Predictive Maintenance 117

    10.6 Environment Sustainability 118

    10.7 Manufacturing Optimization 119

    Exercise 121



    Chapter 11 Agriculture 122

    11.1 Crop and Soil Monitoring 123

    11.2 Agricultural Robot 125

    11.3 Pest Control 126

    11.4 Precision Farming 127

    Exercise 129



    Chapter 12 Smart City 130

    12.1 Smart Transportation 131

    12.2 Smart Parking 132

    12.3 Waste Management 133

    12.4 Smart Grid 134

    12.5 Environmental Conservation 135

    Exercise 137



    Chapter 13 Government 138

    13.1 Information Technology 140

    13.2 Human Service 141

    13.3 Law Enforcement 144

    13.3.4 Augmenting Human Movement 147

    13.4 Homeland Security 147

    13.5 Legislation 149

    13.6 Ethics 152

    13.7 Public Perspective 155

    Exercise 159



    Chapter 14 Computing Platform 160

    14.1 Central Processing Unit 160

    14.1.1 System Architecture 161

    14.1.2 Advanced Vector Extension 164

    14.1.3 Math Kernel Library for Deep Neural Network 165

    14.2 Graphics Processing Unit 165

    14.2.1 Tensor Core Architecture 167

    14.2.2 NVLink2 Configuration 167

    14.2.3 High Bandwidth Memory 169

    14.3 Tensor Processing Unit 170

    14.3.1 System Architecture 170

    14.3.2 Brain Floating Point Format 171

    14.3.3 Cloud Configuration 172

    14.4 Neural Processing Unit 173

    14.4.1 System Architecture 173

    14.4.2 Deep Compression 174

    14.4.3 Dynamic Memory Allocation 174

    14.4.4 Edge AI Server 175

    Exercise 176



    Appendix A Kneron Neural Processing Unit 178



    Appendix B Object Detection (Overview) 179


    B.1 Kneron Environment Setup 179

    B.2 Python Installation 180

    B.3 Library Installation 184

    B.4 Driver Installation 185

    B.5 Model Installation 186

    B.6 Image/Camera Detection 186

    B.7 Yolo Class List 190



    Appendix C Object Detection - Hardware 192

    C.1 Library Setup 192

    C.2 System Parameters 193

    C.3 NPU Initialization 194

    C.4 Image Detection 195

    C.5 Camera Detection 197



    Appendix D Hardware Transfer Mode 199

    D.1 Serial Transfer Mode 199

    D.2 Pipeline Transfer Mode 201

    D.3 Parallel Transfer Mode 203



    Appendix E Object Detection – Software (Optional) 205

    E.1 Library Setup 205

    E.2 Image Detection 207

    E.3 Video Detection 208



    Reference 211?





    其 他 著 作