原序
統計是用來分析、處理自然科學及社會科學資訊的工具。幫助人們在複雜的自然或社會現象中,藉由樣本資料所提供的訊息,經歸納分析、推論檢定、決策、預測等過程,使我們對現實狀況更了解,更能明確地處理現實世界的問題。傳統統計學的目的主要針對各類資訊,擬定一套估計檢定的測度方法,其過程包括:(1)設定合適的理論或模式,(2)蒐集樣本資料,實驗設計、抽樣或模擬,(3)資料分析與研判,(4)估計與檢定,(5)決策或預測。
近年來由於智慧科技發展一日千里,研究方法亦不斷地更新。傳統統計分析工具已漸感到不敷應用。一個主要的原因是:如何更有效處理分析日益複雜、巨量的網路情報資料。雖然資料採礦的興起,解決了不少資料分析的問題,但是對於如何處理非實數樣本資料,比如區間資料、多值資料形式之模糊樣本,應用架構在實變函數與機率論之傳統統計方法,實在已無法有效地分析與掌控。尤其是我們在決策過程中所遇到的不確定性問題,比我們想像得更為複雜。情報資訊除了隨機性外,還包括不完全的資訊,部分已知的知識,或者對環境模糊的描述等。
事實上,我們所獲得的資訊來自測量與感知,而感知資訊中的不確定因素,主要是我們的語言對某些概念表達模糊所引起的。顯然要做出比較好的判斷,我們必須盡量將所能得到的資訊都考慮在內。這包括用自然語言描述的行為、意義等之屬性資訊。因此我們需要用機率將模糊概念數學模式化,其實這也展示了不確定性的另一種形式。模糊理論是一種定量化處理人類語言思維的一個新興學門。模糊邏輯並非如字面上意思那樣的馬虎、不精確。而是面對生活上各種的不確定性,以更合理的規則去分析去管理控制,以期得到更有效率,更合乎人性與智慧的結果。模糊統計並不模糊,它是處理不確定事件的新技術,帶領我們從古典的統計估計與檢定研究計算,進入一個需要軟計算、穩健性的高科技e世代。
在傳統的統計推論方法中,為了了解未知母體參數值,我們常藉由一些評估準則,找出適當的統計量來對母體參數進行估計。平均數是了解母體集中趨勢最重要的母體參數之一,我們常以其不偏估計量,亦即樣本平均數來估計。然而,在日常生活中,母體平均數常為帶有模糊、不確定性的語意變數,或為一可能區間,傳統的估計量評估準則及估計方法便無法適用於此種情形。
本書基於以軟計算方法,配合模糊集合理論,定義出模糊樣本均數、模糊樣本眾數及模糊中位數,並給定很多相關之性質。同時,針對模糊參數之估計量,我們提出適當可行估計法的評判準則。對於古典的統計檢定必須陳列明確的假設。當我們想檢定兩母體平均數是否有差異時,虛無假設是「兩個平均數相等」。然而,有時我們想要知道的只是兩平均值是否模糊相等,此時傳統的檢定方法並不適用於這種包含不確定性的模糊假設檢定。因此本書提出基於模糊樣本之統計檢定方法,針對模糊均數相等、模糊屬於與卡方齊一性檢定作進一步探討。
為了將傳統統計方法延伸到模糊集合與系統的實務應用之中,本書將詳細介紹:模糊問卷調查、模糊聚類分析、模糊迴歸分析、模糊無母數統計、模糊時間數列分析與預測、模糊相關分析。我們舉了很多社會科學的應用實例,尤其是台灣生活化例子,如:模糊問卷北市選情預估、樂觀量表、風景區滿意度調查、台灣茶葉模糊分類、模糊迴歸與景氣循環、模糊時間數列與股價指數預測等等。期望藉以拋磚引玉,開創21 世紀模糊統計與應用的嶄新領域。
吳柏林於台北
秋季,2014